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ABSTRACT

A method of moments solution for the bistatic scattering from planar resistive sheets is
presented. The matrix scattering equations are inverted to obtain a rigorous inverse solution
that can be applied to the synthesis of radar cross section. Computer calculations for several
sheets demonstrate that the synthesized resistivity is in good agreement with the original

resistivity.
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L INTRODUCTION

In the early 1970s, stealth technology was revealed to the public. Since then, the
term stealth has generally been interpreted to mean “invisible to radar.” In reality, however,
stealthy targets are not completely invisible. Stealth technology merely reduces the radar
cross section (RCS) of the target. The RCS of a target is denoted by ¢ and may be defined

as:

Power reflected to receiver per unit solid angle
Incident power density / 4w

o=
A great deal of effort is spent to reduce RCS using four basic approaches:

e Target Shaping
e Surface Material Selection and Coatings
e Active Cancellation

e Passive Cancellation

Each of these methods involves trade-offs. For instance, the optimum target shape to
achieve reduced RCS may result in aerodynamic problems: Additionally, RCS reduction
methods (except for shaping ) are usually very narrowband and are effective over limited
spatial regions. These factors dictate that RCS reduction methods must be chosen based on
the platform’s mission and potential threats. The main goal of RCS reduction is to achieve
an RCS value below an acceptable threshold over a specified range of frequencies and
angles.

The relationship between the electrical characteristics of the material employed and
the target’s resulting scattered field is a very important concept in RCS reduction (RCSR).
The goal of materials selection is to choose a material that yields the smallest reflection of

radar waves. The use of radar absorbing materials (RAM) is crucial to RCSR, but because




of the complexity of the problem, RCS reduction using RAM has historically been based on
intuition and experience.

This thesis examines a method of synthesizing a target’s surface material’s electrical
properties to obtain a specified RCS. Synthesis is a special case of the more general
problem of inverse scattering, whereby information on an unknown target is derived from
its scattered field. In RCS synthesis, the target shape is usually known; determining the
surface material is the primary goal. The synthesis problem can be solved in either the time
or frequency domains. This thesis addresses the problem in the frequency domain.

The solution of integral equations provides a basis for obtaining surface impedance
information from a target’s RCS. In general, both electric and magnetic currents can exist
on the surface. Integral equations can be solved by using the method of moments (MM),
which is a frequency domain technique. The MM solution employed here requires that the
entire structure to be modeled be decomposed into a number of surface patches
(subdomains), which must be small compared to the wavelength. There are two approaches
to deriving the integral equations for surface impedance synthesis. These are the
approximate method and the rigorous method. In the approximate method, the unknown
surface impedance is expanded in a series of basis functions with unknown coefficients, and
an estimate of the surface current is provided. The rigorous method requires that the
coefficients of series expansions for both the impedance and current be determined
simultaneously.

Previous works on RCS synthesis have discussed the problem in terms of the
approximate method [1 and 2]. The rigorous method is the focus of this thesis. In general,
for the rigorous method, a nonlinear set of simultaneous equations must be solved. The
present work will be limited to a resistive surface and the target geometry to a flat
rectangular plate. Additional boundary conditions will be utilized to solve the synthesis
equations for both sets of unknown coefficients. In this limited case the resulting system of

equations is linear.




Chapter II presents theoretical background required in the formulation and
evaluation of the problem. Reflection and transmission coefficients, boundary conditions,
and surface impedance concepts are explained. In Chapter III, the RCS of a rectangular
resistive sheet is calculated with MM and the RCS synthesis procedure for the rigorous
method is developed. Appropriate equations are derived and expressed in matrix form for
the bistatic case. In Chapter IV, computer implementations of these synthesis equations are
discussed. Chapter V summarizes the results of the synthesis and presents conclusions and

recommendations for future research.







II. THEORETICAL BACKGROUND

A. SURFACE RESISTIVITY

The goal of radar cross section reduction is to eliminate, or at least attenuate
significant scattering sources on the target. Thin layers of lossy materials are of special
interest in RCSR design, primarily in the treatment of surface waves. Discontinuity
boundary conditions are used to mathematically represent thin films. They are the resistive
sheet and conductive sheet boundary conditions. The boundary conditions define the
relationship between the current and the tangential field components on the surface. A
resistive sheet, which is the primary focus of this thesis, is an infinitely thin imperfect

electric conductor. Its conductivity is finite, which means ¢, < «, and it does not support a

magnetic current J s = 0). For resistivity, the unit ohms per square (2/ sq ) is generally
used. This unit is derived from the basic definition of resistance for the special case of
length equal to width (£ =w)

£ 1
R = = '
 ow ot &

where o, is the conductivity of the material per meter and ¢ is the thickness of the

material.

There are two limiting values for surface resistance. The first is R;=0, which represents a

perfect electric conductor. The second is R=co, which represents a surface matched to free

space.
The boundary conditions may be expressed in general vector form as [1]
Ax E(+)-AaxE(-)=0, Q)
AxH+)-ax H(-)=J, , 3)
with:




ax{fix B(+)}=-RJ, )
where 7 is the unit vector normal to the sheet, and is directed to the upper side of the sheet,

and js is the total electric current supported. Plus and minus signs represent upper and
lower faces of the sheet, respectively.

The electromagnetic dual of the resistive sheet is the magnetically conductive sheet,
which supports only magnetic currents. A combined sheet consisting of resistive and
conductive sheets is equivalent to an impedance surface, which is a surface where
permittivity and permeability both differ from the surrounding medium [1]. The surface

impedance approximation, also known as the Leontovich boundary condition, is:

=75 ®

where E, and H,, are the total tangential fields on the surface, and7,is the surface
impedance in ohms [3]. Solution of a scattering problem for the resistive sheet gives the

solution for the conductive case by way of the duality principle.
B. REFLECTION COEFFICIENT

When a traveling wave reaches an interface between two different regions, it will be
reflected or transmitted with the relative magnitudes of the two components determined by
the impedances of the two regions. The reflection coefficient for a resistive thin film can be
derived from the boundary conditions in equations (2), (3), and (4). The geometry is shown
in Figure 1. Bistatic scattering for parallel and perpendicular polarizations are investigated
separately. Specular reflection can be assumed because the sheet is infinitely thin.

1. Parallel Polarization

For parallel polarization (TM case), the incident wave is
E; =BEge ™7, ©

where k is the incident wave vector. After some mathematical manipulations, the reflection




coefficient is found to be: [1]

-1, €0s,
I" — [2] 1 .
™ 2R, +n, cosb; @
The surrounding medium is assumed to be free space with impedance n,.
kS
Figure 1. Reflection and Transmission from a Resistive Sheet
2. Perpendicular Polarization
For perpendicular polarization (TE case) the incident wave is:
E;=§Eje " )
and the reflection coefficient for the resistive sheet is [1]
N,
1E ®

B 2R cosH; +m,




C. RADIATION INTEGRALS

The radiation integrals are integral solutions to Maxwell’s equations, and are also
called Stratton-Chu integrals. They can be derived directly by taking the curl of
Maxwell’s first two equations, using the vector of Green’s theorem, and then integrating
[3]. E- and H-fields are determined from current distributions by using the radiation
integrals. On a resistive sheet the magnetic currents are zero. The field equations are
further simplified when only the far zone fields are of interest.

In the far zone (kr >>1) and the‘E- and H-field vectors are orthogonal to each
other and the direction of propagation resulting in TEM mode fields. The equations used
in this section are derived by Balanis [4]. A rectangular coordinate system is used in
formulating the solution for the rectangular sheet problem. The geometry is shown in

Figure 2.

" —>

Figure 2. Coordinate System for Scattering from a Planar Rectangular Plate




The far-field spherical components of the E-field are:

E =0
jke ¥
Ey=- N,
0 i MolVe (10)
and
jke T*
- Ey =-— N,
¢ 4nr Mo an
where
N, = ﬂ [Jx cos@cos¢ +J, cosOsin d)] e NVa'dy' . (12)
N,= H [— J, sing+J, cos¢] e’V dx'dy' 13
and
r'cosy = x'sinBcosd + y'sinBsing = x'u+ y'v=g. (14)

The direction cosines are
u=sinBcos¢ ,
v=sinBsin¢d ,
and
w=co0s0 .

In order to find scattered fields, the current must be known. The method of
moments will be used to find the current. In this approach, the unknown quantity is
represented by a series with unknown expansion coefficients. The boundary conditions are
imposed to obtain an equation for the current. After the current is found the scattered fields
can be obtained from equations (10) and (11). This is referred to as the direct problem, i.e.,
finding the fields from the currents. Determining the currents from the far field is the

inverse or synthesis problem.



D. RCS SYNTHESIS APPROACH

RCS synthesis is a part of a more general problem of inverse scattering. In an
inverse scattering problem, the scattering field is known and the objective is to extract
current and resistivity information about the target from the scattered field. There are two
types of inverse scattering problems: general and restricted. In the general case nothing is
known about the target whereas in the restricted case some characteristics of the target are
known. The radar cross section synthesis problem falls into the latter case. The target shape
is known, but the surface materials and current are to be determined. Synthesis problems
can be solved in the time or frequency domains. This thesis deals with synthesis problems
in the frequency domain.

At an observation point P, the scattered electric field will be [3]

- . - Z - v'.J
E (P)=-jkn, J-_[[JSG+ Jks (A'x J)xV'G- 2 > V’G}Js’ 15)
where
e~ JRR
G= IR and R=|r—r |

Primed quantities are associated with the source point; unprimed quantities refer to the
observation point. In this equation, E(P) is known, but the current and surface
impedance are both unknown. This equation can be solved approximately or rigorously.
In the first case, the current can be approximated and the equation can be solved for
impedance. Equation (15) is sufficient to completely describe the problem. In the second
case, both current and impedance must be determined. This requires additional

information provided by the following equation: [3]

10




E(F )

]

4 jk j lZ x J.)Gds' + HV' [z, x js]VGdS’} (16)

[kajJGds +Jﬂv' J)\VGds -V x [[z,( x )Gds]

Equations (15) and (16) can be solved simultaneously for the current and impedance.

- Z(F)A(F) x H(F) = Z,(F)A(F) x [v « [[7.Gas

tan

E. METHOD OF MOMENTS

The method of moments is a frequency domain technique. It is used for solving
complex integral equations by reducing them to a system of linear equations. The MM
technique requires that the entire structure to be modeled be broken down into subdomains.
The surface is subdivided to a number of patches with dimensions small compared to the
wavelength. Moment methods employ a technique known as the “method of weighted
residuals.” Actually, the terms method-of-moments and method-of-weighted-residuals are
synonymous [5].

The MM technique is popular because it can be applied to arbitrary bodies.
Furthermore, integral equations are reduced to a set of linear equations, which are
conveniently solved by using matrix algebra. The size of the matrix is directly related to
the electrical size of the body. Large bodies result in large matrices, which affects
computation time, and limits the size of the targets that can be handled in practice.

The first step in MM for the direct problem is to represent the current by a series
with unknown expansion coefficients. For a rectangular resistive plate in the Xy plane, one

possible representation for the current is:

J (x,y) Z (Ixe+Iny ) 17)

11




The vectors J} and J} are the expansion or the basis functions, which are complex in
general. Selection of the basis functions is very important. They should be
mathematically convenient — in other words, easy to integrate and differentiate. They
should also be consistent with the behavior of the current to provide fast convergence
[3]. The expansion scheme for the currents can be seenin Figure 3. Two basis functions
span each rectangular subsection: one x-directed and a second y-directed. These two
orthogonal basis functions are sufficient to uniquely define all possible current vectors on

the patch.

Figure 3. Three-dimensional View of Pulse Basis functions for the Currents J and J y

12




III. FORMULATION AND SOLUTION

A. RCS OF A RESISTIVE SHEET USING THE METHOD OF MOMENTS

In this section, the scattered field and radar cross section of a resistive sheet is
calculated for the bistatic case. This direct problem solution is used to generate and
validate the synthesis procedure. A constant resistivity is assumed on each patch, and the
method of moments is used to find the current distribution on the plate. Rectangular patches
and nonoverlapping pulse basis functions are used for calculations. After the synthesis
procedure, the resulting resistivity is compared with the original resistivity to verify the
synthesis equations.

The resistive sheet lies in the xy plane. The incident wave is assumed to be a planar

wave, and it contains both parallel and perpendicular components [3],

E' = (8§ +bBy)e "7 = (2EL + 9B} )T as)
where,
—jk -7 = jk[xsin®; cos¢; + ysin®; sin¢; +zcosb, | (19)
and,

E;C = Eé cosei cos<|>l- - Eé, sincl)l- 20)
E; = E} cos6; sing; + Ej cosd;

The resistive sheet integral equation is solved to find the current distribution on the surface
3],

tan Mo s

E,(F) =RJ,+{jkmg Hiﬁdmiv[v-ﬁjﬁds} @1)
. ) tan

13




The unknown current is expanded into a series using equation (17), which can be written in

the following manner:
N v N Py
5 A A A p (x Dy) A p (x ’y)
Js=Jxx+Jyy=xZn:I,’,‘—"—A—y—+y§n;I,{"—Ax—— (22)

The quantities Ax and Ay are defined in Figure 4,and p, (x', y') is the pulse function

1 , ifx'and y' on patch n.

Pa(x') = {0

The method of moments is initiated by inserting equation (22) into (21). At this

(23)
, else

point a set of testing or weighting functions are defined. The weighting functions describe

how the boundary conditions are enforced [6]. These functions are generally chosen to be

the complex conjugate of the basis functions ( W = J), which is known as “Galerkin’s
Method” [1]. Weighting functions for this case are [7],

—

W=W3i+W,p (24)

where,

@3

(26)

Both sides of the equation (21) are multiplied with these weighting functions and integrated.
In terms of expansion and weighting functions, the integral equation (equation 21) takes the

form

(12 s = [[2,7, s+ o [ [ 3, o7~ (7547 | o

14




Equation (27) can be separated into two equations, one associated with the x
components and the second with the y components. The derivatives of the pulse functions

are approximated by & functions as shown in Figure 4. The x component of equation (27)
becomes,

S(x—x;,y)

8(x,y-y;)

M,yn/gé

> Ax
=xni——-
2
Ax yE = &y
X, Y- y

n

pd

—6(x—x:,y)

Figure 4. Pulse Function Derivatives for a Patch [7].




[[E e Pn(.) 5 _ i RS(Z e pn(x>y)j Pnl(%:7) o

Ay Ay Ay

+ i [ gds'{[; nG ) e Ll Ll )

(28)

ot o)) Eferoe)

sy o).

A similar equation can be obtained by testing with the y-directed weighting functions,

Ax Ax

([, 77 £m gc,y) ds= [ RS(Z I pn(x,y)) Pu(%:7) o

. \ (XY ) P (%, 111 -
oo 2 Ao

Aorori STl Kl
5(x, y'-y;))m}c;(x,xg 5y).

16




Now define the following quantities,

Gy = JAk;]O ”dxdy”dx 'dy'G(x,x',,y") (30)

Sm Sn

ox .modd{ - ') -Glxo.x ..
=y AyImyAyfny (x5, ) = Glmo3.7) o

-G(xZ,x; ay,y')+ G(x;i,x;' ,y,y’)}

@wﬁ fa jdx{ (st )= Glsmxovi) @D
o

—G(xm,x VY )+ G(xm,x',%y;)}

Ax ,ifm=n
Fm= H—ds = , 33)

O ,ifm#n
Vi=E iAxsinc( kA;ui ) sinc(—kA;v i jej Kt + yrivi) (34)
Gw_fk"O ﬂdxd ﬁdxdyG(xx 7,7") (35)

0% =1 J fax'{G{xx', v 77 )~ G5 v )
Vm  Ayn (36)

—G(x,x’,y?;,y; )+ G(x,x’,y;,y;“ )}

17




L P F [ PR R B ety

kAxAy
Axy,  Ayp 37
—G(x,x,,_,y;;,y’)+ G(x,x;,y;;,y')}

Ay .
2 itm=

5=y LT @8)
0 ,ifm#n

VY =E,Ay sinc( kA;cu,- ) smc(—-———kA;v : jej Kot + i) 39)

Using equations (30)-(39), equation (28) and equation (29) can be cast in matrix form :

Vv* ~ ;X ix Gxx+Qxx Qxy I
VY - ;Y ) b + Q¥ G +Q7 | I “9)

For the synthesis problem, the number of unknowns in this equation is 4 N where N is the
number of expansion terms. There are 2N current coefficients and 2N  resistivity
coefficients in general. If the material is isotropic then %" = %’ and the number of unknown
resistivity coefficients is just N . For the direct problem the number of unknowns is only
2N.

The integrals appearing in the above equations must be evaluated numerically. To

reduce the computer run time, the following approximation can be applied [3],

Xyt —

2
If(x,x')dx; A f(xm,x') 41)
a

Xm

With this approximation, the impedance matrix elements in equations (31), (32), (36) and
(37) are

Omn = %O-{G(x;,x; >ym,yn)~ G(x;ux;“ ,ym,yn)

_G(x;’x;>ymayn)+G(x;nx;::ym:yn)} @

18




Opn = %{G(x;,xmym,y; )—G(x;,xn,yn,y;’ )

~G{xs s YoV )+ Gl Yo )| “3)
L e

=Gt Vi )+ Gl s sV )
03 = LG (xp 30,3797 ) (s 0s Vo3 ) .

_G(xmaxn ’y;;ﬂy;) + G(xm>xn ’y;;’y:)}
Note that in all of these equations, the Green’s functions in the integrands can

become singular for the self term because both the source and the test points lie on the same

segment. This problem can be solved by moving the test point off the patch axis [3]. For

example, when integrating inx orx’,

R= \/(x - x')2 + (y - y’)2 + ay2 (46)

and when integrating in y or y’,

R=\fx-xP +(y-y) +a. @n

In this case, an equivalent radius of the patch is used :
a, =0.225 Ax a,=0225 Ay (48)

Equation (40) provides a means of solving the direct problem by plugging the
resulting current coefficients into the far-field radiation integrals. The current coefficients

can be obtained if the incident field and resistivity are known. The scattered field at an

observation point (6 50 s) is computed by integrating the current. The current coefficients

19




that occur in the scattering equations are the same for all observation angles, because the
same incident field determines these coefficients. After integrating, the scattered electric

field has the following form:

)sinc(———kAyv S)ejkg)
2
u,) . kAyvg) _;
)smc(TJe Jkgﬂ (49)

(yz IJAy smc( kA

n=1

4ty i

— 4 . N
E, = Jkno e"f’“[(fz I} Ax sinc(kAxus

= XE, + JE,
where:

8= Xplg + Yy Vs
= x,, 8in0; cosd + ¥, sinb  sin¢
Finally, the complete expression for the 6- and ¢- components of the scattered electric field
is:

Eg = E; cosB cosd + Ej, cosO sind, (50)
Ej =—Eysing, + Ej cosd, (1)
From the definition of the radar cross section for a three-dimensional target [1],

= lim | 4772 I l2
r—>o IEz‘

(52)

and the corresponding radar cross section for the 6- and ¢- components of the scattered

electric field for a unit plane wave are

-
kz"" [E ] (54)

20




The first subscript on ¢ denotes the polarization of the scattered field, whereas the second

one denotes the polarization of the incident wave.
B. SYNTHESIS FORM OF THE SCATTERING EQUATIONS

The resistivity of the rectangular plate can be determined rigorously by expanding
both current and resistivity into series and solving for the expansion coefficients. For this
purpose, the scattered electric field is found using the formulation in the previous section.
Because the sinc functions in equations (34) and (39) are periodic in direction cosine space
(DCS), it is convenient to work in DCS (Figure 5). There are two approaches sampling the
RCS in DCS. The first is to choose the observation points entirely inside of the unit circle.
The second is to include observation points outside of the unit circle. Thc; first approach
makes physical sense because all observation directions are points in real space. Directions
outside of the unit circle correspond to complex angles. However, the first method is
restrictive in the number of observation points, because they must be equal to the number of
subdomains on the plate to obtain a square matrix that can be solved by inversion. The
computer program which calculates and plots RCS in DCS is presented in the Appendix.

In synthesizing the plate resistivity the far-field pattern is given. It is known that a
resistive sheet does not support magnetic currents, and the far-field is related to the electric

currents on the sheet by
E,(P)=-jkn, [[J,Gds' (55)
S

P denotes an observation point in the direction (r,0,¢) or (x,»,z). On the surface of the
sheet, equation (21) still holds, and in this equation resistivity and current are not
independent of each other. These two quantities are related at every point on the surface of
the sheet by the tangential component of the electric field as indicated in equation (4).
Equations (21) and (55) can be solved simultaneously for the current and resistivity.

For the current expansion equation (22) is used, and for the resistivity,

21




N
Rs = anpn(xlsy') . (56)
n

Unit Sphere
(r=1)

Figure 5. Direction Cosine Space (DCS) .
The resistivity is assumed to be constant on each patch. Equation (22) is plugged into the
equation (55), and after integration,

- e M &1y 1Y
EA{P. )=—7 L x+-2-9|F (u ,V
s( m) Jk'lo Amr ’Z:l Ay Axy n( m m) (57)
where the last factor in the equation is
j . [ kA
F, (um,v m) = o/ ontm+y ”v’”)AxAy sinc( kA;u”’j smc(——-;v ’”) (58)

22




Equation (57) can be solved for the unknown current coefficients given a set of m =

1,2,....,N scattered field values. In matrix form, equation (57) is

F F
E¥=—TI* EY =—1

These two equations can be combined and put into the following form :

[Ei‘ } %y n [5} (60).

E{
In equation (60), the only unknowns are the I*and I” coefficients, and they can be found
by simple matrix algebra. After these coefficients are found, they are plugged into the

resistive sheet integral equation (equation (21)) to find the resistivity coefficients in

Vv* _ ;X r i Al
vt glr]Tzr zr|r €D

There are 4 N rows in equation (61). In an isotropic resistivity case, there are 3 N

equation (56).

unknowns because the terms % *and 2 ¥ in equation (61) are same. Rearranging equation

(61)

;X Ix Vx Zxx ny Ix
y = - (62)
7\ vz 7| r
The matrix operations on the right hand side yield a column vector. The elements of the

column vector are # ;I and % 2I) and since I, and I, are known, the resistivity can

be found by element-wise division.
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A.

IV. COMPUTER IMPLEMENTATION AND RESULTS

INTRODUCTION

In this chapter, the computer coding of the RCS synthesis formulas is described and

numerical results are presented for a flat resistive sheet. The results of three investigations

are included :

B.

1. Verification of the MM solution for rectangular patches and pulse basis
functions. ,

2. Verification of the synthesis equations derived in Chapter III and a parametric
study of convergence.

3. Sampling requirements.

VALIDATION OF THE RECTANGULAR PATCH CODE

The rectangular patch code based on pulse expansion functions developed in

Chapter III was programmed in MATLAB. Computed results were compared to a MM
code named PATCH [9]. Typical results are shown in Figures 6 through 10. The two codes

give essentially the same RCS as expected. The agreement is within 2 dB down to the -40

dB level when the two codes are converged.

Validation of the rectangular patch code is important because many of the same

subroutines and functions are used in the synthesis program. Furthermore, the output of this

program is used as the input for initializing the synthesis process. Figures 11 and 12 show

two dimensional plots of the RCS. The corresponding electric field values are used to fill

the vector V in Equation (40).

C.

VERIFICATION OF THE SYNTHESIS EQUATIONS

The synthesis equations and computer codes are validated by the following process :

1. Compute the scattered field for a plate with known surface resistivity.
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2. Use the scattered field from step 1 in the synthesis procedure.

3. Compare the synthesized resistivity in step 2 to the original resistivity used in
step 1. In principle the difference should be zero. However, because of
numerical and sampling errors, the residual will not be exactly zero, but some
small (and hopefully negligible) value.

The difference between the original and synthesized resistivity AR, is defined by
AR; =R, - Ry,
where
Ry, = Original resistivity used to compute the electric field values.

Ry, = Synthesized resistivity.

For R,,=377, AR, < 10712 as shown in Figure 13. For R = 10, AR, is as large as 0.06
as illustrated in Figure 14. Similar results are shown in Figures 15 through 19. The lower
plate resistivity supports surface waves which increase the size of the off-diagonal elements
in Z relative to the size of the diagonal elements. This leads to increased roundoff error. The
number of field (RCS) samples N, and N, are equal, and they include the points outside
of the visible region, which is the second approach as described in Chapter III-B. The

number of patches are N, = N, and N, = N, . All of the visible region field points were

in the backscatter (rear) hemisphere. Including the points outside the visible region affects
the accuracy of the computation and causes some poorly conditioned matrices. However,
the error resulting from this approach is not significant. In all cases the residual resistivity

was less than 0.6 percent.
D. SAMPLING REQUIREMENTS

Computer memory and execution time are very important limitations in the
scattering and synthesis computations. Reducing computer run time depends on reducing
the size of the matrices (especially impedance matrix), and consequently minimizing the
number of patches. Thus a guideline for the minimum number of subdomains which gives

computationally accurate results is necessary to minimize the computer run time.
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For the synthesis calculation the continuous scattered field is sampled just as a
continuous time function is sampled in a digital communication system. Therefore the same
sampling requirements apply. If the frequency content of the scattered field is plotted, the
minimum sampling rate must be at least twice the highest frequency [3]. To obtain the
frequency content a two-dimensional discrete Fourier transform (DFT) is performed on the
scattered electric field values, which are computed in sufficiently large number. The
computation is performed in DCS because most RCS patterns are highly periodic in DCS
and thus the number of sampling points is smaller. If N;, and N, are the number of
sampling points in the % and v coordinates, then the sampling intervals are 2/N;, and 2/N;,.
This represents © radians in visible space, and hence the scaling of the # and v axes upon
returning from the FFT is 2/Ny, Auand 2/Ny, Av, respectively.

In Figures 20 through 23, frequency information for 1A x 1A and 3A x 3A plates is
plotted. The FFT is performed on the center row of the two-dimensional scattered electric
field matrix to illustrate the frequency content in one coordinate. The magnitude of this
transform is plotted with respect to the number of cycles in DCS in Figures 20 and 22. The
result of a two-dimensional FFT performed on the whole E-field matrix is plotted with
respect to the number of cycles in DCS in Figures 21 and 23. The maximum frequency for
1A x 1A resistive plate is 1 for the bistatic case. Since the sampling frequency must be twice
the maximum frequency component of the signal, the sampling frequency is 2, which
corresponds to 0.5\ x 0.5A patch size. Applying this procedure to a 3A x 3\ plate yielded
the same maximum patch size. The required sampling frequency approaches zero as the
plate size gets smaller, as expected. Thus in the case of bistatic RCS synthesis a half-
wavelength subdomain size corresponds to the Nyquist sampling rate. Note that this
guideline applies only to cases where the RCS pattern is highly periodic (i.e., negligible
multiple reflections, surface waves, diffraction, etc.). When these other scattering
mechanisms are present the scattering pattern bécomes more complicated and thus contains

more high-frequency components. Also, it is important to note that satisfying the field
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sampling rate does not insure that the series expansion for the current on the plate is

converged.

1 0 J R T T T

Solid line - Patch code

s
80 -60 -40 -20 0 20 40 60 80

@, degrees (¢ = 0°)

Figure 6. Comparison of the bistatic RCS computed with PATCH vs that with
rectangular patches (Rg =377, Ny=Nj, =8, Ly=Ly=11and ;= o= 0°).
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Figure 7. Comparison of the bistatic RCS computed with PATCH vs that with rectangular
patches (Rg=377,N,= N,= 14, L,= L,= 11 and 6= ¢=0°).
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Figure 8. Comparison of the bistatic RCS computed with PATCH vs that with rectangular
patches (Rg= 10, N;=N,=20, L,=L,= 11 and 6= ¢=0°).
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Figure 9. Comparison of the bistatic RCS computed with PATCH vs that with rectangular
patches (Rg=377, N,=N,=20, L,= L,= 11 and 8=30°, ¢=0°).
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Figure 10. Comparison of the bistatic RCS computed with PATCH vs that with rectangular
patches (Rs= 377, N,= N,=20, L= L,= 24 and 8= ¢=0°).
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Figure 11. Two dimensional plot of the bistatic RCS of a rectangular resistive sheet (Rg=
377,N,=N,=23,(N,=N,, N,=N,), L,=L,= 14 and 6;= ¢= 0°).
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Figure 12. Two dimensional plot of the bistatic RCS of a rectangular resistive sheet (Rg=
377, Ly= Ly= 14 and 6;=30°, ¢= 0°).
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Figure 13. Residual resistivity for Rgo= 377, Ny=Ny=4 (Nx=Ny, Ny=Ny), Ly= Ly~ 11 and
normal incidence.
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Figure 14. Residual resistivity for Rgo= 10, Njy= Ny=9 (Ny= Ny, Ny=Ny), Ly=Ly= 11
and normal incidence.
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15. Residual resistivity for Rgp =377, Njy= Ny= 16 (Ny= Ny, Ny=Ny), Lx= L~ 14







Figure 17. Residual resistivity for Rgo= 377, Nyy=Ny= 16 (Ny= Ny, Ny= Ny), Ly= L= 24
and normal incidence.
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Figure 18. Residual resistivity for Rgo= 377, Ny= Nyy=23 (Nx= Ny, Ny= Ny), Lx=Ly= 14
and normal incidence.
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Figure 19. Residual resistivity for Rgo= 377, Ny= Ny=23 (Nx= Ny, Ny= Ny), Ly= L= 14
and 6;=30°, ¢=0°.
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Figure 20. Frequency analysis of one row (or # coordinate) of the scattered E-field. Maximum

L= 12, 256 field points and normal incidence.

frequency is 1 for R,,=377, L,
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Figure 21. Frequency analysis in two-dimensions for the scattered E-field. Maximum

frequency is 1 for Rgo= 377, Lx= Ly~ 14, 256 field points and normal
incidence.
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Figure 22. Frequency analysis of one row (or one column) of the scattered E-field. Maximum

34, 900 field points and normal incidence.
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frequency is 3 for R,,=377, L.
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Figure 23. Frequency analysis in two-dimension for the scattered E-field. Maximum

frequency is 3 for Rgo=377, Ly= Ly= 34, 900 field points and normal
incidence.
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V. CONCLUSIONS

A rigorous bistatic RCS synthesis method for flat rectangular sheets has been
presented. For convenience, the research was limited to resistive surfaces and paraliel
polarization. The scattering and synthesis equations are based on the method of moments
(MM) technique. A rigorous method requires that both the current and resistivity be
expanded into series, and the unknown coefficients determined simultaneously.

The scattered field for a resistive sheet was first calculated for a known resistivity.
The bistatic RCS of the resistive sheet was used to validate the rectangular patch solution
by comparing it with the output of PATCH for different cases. This direct problem solution
was used to generate and validate the synthesis procedure. The unknown current and
resistivity coefficients were found by solving two coupled integral equations (equations (15)
and (16) ). The reconstructed and original resistivities were compared to verify the
synthesis equations. A parametric study of the solution convergence was performed. In all
cases, the reconstructed resistivity obtained from the synthesis equations was in agreement
with the original resistivity.

The frequency content of the scattered electric field was also investigated in order to
determine the maximum allowable patch size. The number of far-field points must be
equal to the number of patches on the plate to obtain a unique solution. If the field pattern is
highly periodic in DCS, as in the case of the physical optics solution, the Nyquist sampling
theorem yields approximately 0.5\ patch size on the plate for bistatic RCS. However, a
MM solution with 0.5\ patches is usually not converged; the conventional guideline is
0.IA subdomains. However, in many cases of practical interest where the patterns to be
synthesized are primarily determined by specular scattering (i.e., negligible surface waves
and multiple reflection and diffraction) the minimum patch size can possibly be larger than
the usual 0.1A.

The rigorous solution presented in this thesis is limited to flat rectangular resistive

sheets. This allowed the use of rectangular subdomains with pulse basis functions. Pulse
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basis functions are convenient for computer programming and result in matrix synthesis
equations that are easy to solve. However, the more important scattering problems involve
doubly curved surfaces. For these targets triangular subdomains must be used to accurately
represent the surface. The overlapping basis functions of the type used in PATCH will
result in much more complicated (and possibly nonlinear) sets of equations. It is

recommended that this be the direction of future research in this area.
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APPENDIX COMPUTER CODES

In this appendix computer codes are presented. The code plate.m calculates the
RCS in O-direction for the bistatic case and TM, polarization. The code platedcs.m
calculates the RCS and plots it in direction cosine space. The data from this code is saved
to be used in the synthesis program. The code synt.m uses the stored data to reconstruct the
surface resistivity. The codes dcsin.m, center.m, green.m, greenl.m, green2.m, green3.m,
and green4.m are the functions which are used in the synthesis and scattering programs.
The code sample.m performs the FFT analysis in the u and v directions of the scattered

field. Detailed explanations are presented in the comments in the codes.
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eV YeYeYe Yo Ye Yoo Yo o oSN Yoo /o SNV Ya Ve Ye oo /oo %% % %% %

% plate.m %
% Resistive Square Plate Bistatic RCS (in teta direction) %
% with Method of Moments. %
% %
% Ugurcan Samli, July 1996 %
% ’ %
/6% %Y%6Y%6%% %% Yo% %% Yo% %Yo Yo% %Yo % %% %0 %% % % %% % %% % %% %% %% %o
clear all;

format compact;

%Y%e%Y%e% %% %% %% %% % Variables used in the program%%%%%%%%6%%%%%

% modex and modey are the number of patches in x- and y-directions
% respectively. Eotet and Eophi are for polarization. Rs is the
% constant surface resistivity.

Lx=1; % input('Length in x-direction=");
Ly=1; % input('Length in y-direction=");
modex=20; modey=20;

deltax=Lx/modex; deltay=Ly/modey;
mode=modex*modey; eta=377; lambda=1;

k=2*pi; t=pi/180; Rreal=377; Rimg=0;

Eotet=1; Eophi=0; Emag=sqrt(Eotet"2+Eophi"2);
incr=2; sta=-90; stp=90;
lim=floor((stp-sta+1e-5)/incr)+1;

int=2; phiang=0; phi=phiang*t;

Rsl1=Rreal+j*Rimg; Rs2=Rs1*eye(mode); Rs=diag(Rs2)’;
%%%%%%%%% Computing patch center points %%%%%%
in=0;

for s=1:modey

for ss=1:modex

in=in+1;

xn(in)=(-Lx/2+deltax/2-+(ss-1)*deltax);
yn(in)=(-Ly/2+deltay/2+(s-1)*deltay);

end;
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end;

Xm=xXn; ym=yn,

funl=j*k*eta; fun2=j/k*eta;

%%%%%%%%%% Calculation of impedance matrix %%%%%%%%%%%

% Impedance matrix calculation is same with the impedance matrix
% calculation in platedcs.m, green functions are used in calculations.

for n=1:mode
for m=1:mode

Gxx=green(xm(m),xn(n),ym(m),yn(n),deltax,deltay,int);
Gyy=green(ym(m),yn(n),xm(m),xn(n),deltay,deltax,int);

xnl=xn(n)+deltax/2;
xn2=xn(n)-deltax/2;
xm1=xm(m)+deltax/2;
xm2=xm(m)-deltax/2;
ynl=yn(n)+deltay/2;
yn2=yn(n)-deltay/2;
yml=ym(m)+deltay/2;
ym2=ym(m)-deltay/2;

Qxx=(green1(xm2,xn2,ym(m),yn(n),deltax,deltay,int)...
-greenl (xm2,xnl,ym(m),yn(n),deltax,deltay.int)...
-greenl(xm1,xn2,ym(m),yn(n),deltax deltayint)...

+greenl(xm1,xnl,ym(m),yn(n),deltax deltay,int));

Qxy=(green2(xm2,xn(n),ym(m),yn2 deltax,deltay,int)...
-green2(xm2,xn(n),ym(m),ynl,deltax deltay,int)...
-green2(xm1l,xn(n),ym(m),yn2,deltax, deltay,int)...
+green2(xm1,xn(n),ym(m),ynl deltax deltay,int));

Qyx=(green3(xm(m),xn2,ym2,yn(n),deltax,deltay,int)...
-green3(xm(m),xn2,ym1,yn(n),deltax deltay,int)...
-green3(xm(m),xn1,ym2,yn(n),deltax,deltay,int)...

+green3(xm(m),xnl,ym1,yn(n),deltax,deltay,int));

Qyy=(green4(xm(m),xn(n),ym2,yn2,deltax,deltay,int)...

-greend(xm(m),xn(n),ym2,ynl deltax,deltay,int)...
-green4(xm(m),xn(n),ym1,yn2 deltax,deltay,int)...
+greend(xm(m),xn(n),ym1,ynl deltax,deltay,int));
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sum=fun1*Gxx-fun2*Qxx;
if m==n, sum=sum-+Rs(m)*(deltax/deltay); end
Z(m,n)=sum;

sum=-fun2*Qxy;
Z(m,n+mode)=sum;

sum=-fun2*Qyx;
Z(m+mode,n)=sum;

sum=fun1*Gyy-fun2*Qyy;
if m+mode==n+mode, sum=sum+Rs(m)*(deltay/deltax); end
Z(m+mode,n+mode)=sum;

end;
end;

ZI=pinv(Z);
disp(Impedence Matrix Computed and Inverted’);

%%%%%%%%%%%%% Incidence angle %%%%%%%%%%%

phii=0; teti=0;
sinphii=sin(phii*t); sinteti=sin(teti*t);
cosphii=cos(phii*t); costeti=cos(teti*t);

vvi=sinphii*sinteti;
uui=sinteti* cosphii;

Ex=Eotet*costeti*cosphii-Eophi*sinphii;
Ey=Eotet*costeti*sinphii+Eophi*cosphii;

for n=1:mode;
argx=k*deltax*uui/2;
argy=k*deltay*vvi/2;
sincx=1; sincy=1;
if abs(argx)>1e-3, sincx=sin(argx)/argx; end
if abs(argy)>1e-5, sincy=sin(argy)/argy; end
expxy=exp(j*k*(xn(n)*uui+yn(n)*vvi));
vx(n)=Ex*deltax*expxy*sincx*sincy;
vy(n)=Ey*deltay*expxy*sincx*sincy;
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end;
% Excitation vector V, and current coefficients I.

V(1:mode)=vx(®);
V(mode+1:2*mode)=vy(:);
I=ZI*V'!;

%%%%%% %% calculation of the scattered fields %%6%%6%%%%%

for aa=1:lim;
angle(aa)=(aa-1)*incr+sta;
teta=angle(aa)*t;
costet=cos(teta);
sintet=sin(teta);
cosphi=cos(phi);
sinphi=sin(phi);
vv=sinphi*sintet;
uu=sintet*cosphi;

for n=1:mode
argx=k*deltax*uu/2;
argy=k*deltay*vv/2;
sincx=1; sincy=1;
if abs(argx)>1e-5, sincx=sin(argx)/argx; end
if abs(argy)>1e-5, sincy=sin(argy)/argy; end
expxy=exp(j*k*(xn(n)*uutyn(n)*vv));
vx1(n)=deltax*expxy*sincx*sincy;
vyl(n)=deltay*expxy*sincx*sincy;

end;

Exs=vx1*I(1:mode);
Eys=vy1*I(mode+1:2*mode);

%%%% TM and TE polarization cases are together.%%%%%
etet=-j*k*eta/2/k* (Exs*costet*cosphi+Eys*costet*sinphi);
ephi=-j*k*eta/2/k* (-Exs*sinphi+Eys*cosphi);
etetrcs(aa)=etet;

ephircs(aa)=ephi;

end;
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%%%%%%% Calculation of the RCS, and plots %%%%%%%

RCStet=10*log10(abs(etetrcs)."2*2*k+1e-10);
RCSphi=10*log10(abs(ephircs).*2*2*k+1e-10);

plot(angle,RCStet),grid;

max 1=max(max(RCStet));
db=(floor(max(max1)/5)+1)*5;
axis([-90,90,db-50,db]);

xlabel('Angle in degrees');

ylabel(RCS in dBsm ");

title('Bistatic RCS of a Resistive Plate With MM'),

%save f1 Z RCStet angle Rreal
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% platedcs.m %
% This program calculates Resistive Square Plate Bistatic RCS with %
% Moment Method, and it plots this RCS in direction cosine space. %
% %
% Ugurcan Samli. %
% %
%%6%6%6%6%6%%%%%6%6%0%%%6%0%6%%6%%%%%%%%%%%%%%%%%%%%%%
clear all;

format compact;

%%%%%%%%%%%% Variables used in the program %%%%%%%%%%%

Lx=1; % input('Length in x-direction=");
Ly=1; % input('Length in y-direction=");
T=1; % If the number of field points equal to number of

% patches, T=1.
% modex and modey are the number of segments in x and y direction.
% Eotet and Eophi determines the polarization (Eotet=1 and Eophi=0
% is the Teta polarization.)
eta=377; lambda=1; k=2*pi; t=pi/180; int=2;
Rreal=377; Rimg=0;
Eotet=1; Eophi=0;

% Finding center of the patches in Direction Cosine Space.
% dcsin.m and center.m functions are called.

modex=4; modey=3;

deltax=Lx/modex; deltay=Ly/modey;
mode=modex*modey;

load uvl % u and v points are computed seperately.

% Constant surface resistivity Rs matrix.
Rs1=Rreal+j*Rimg; Rs2=Rs1*eye(mode); Rs=diag(Rs2)';

%%%%%%%%%% Computing Patch center points. %%%%%%%%%%%%%

in=0;

for s=1:modey

for ss=1:modex
in=in+1;
xn(in)=(-Lx/2+deltax/2+(ss-1)*deltax);
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yn(in)=(-Ly/2+deltay/2+(s-1)*deltay);
end;
end;

Xm=Xn; ym=yn;
funl=j*k*eta; fun2=j/k*eta;
%%%%%%% Filling Impedence Matrix %%%%%%%%%:%%%

% Green functions are called in the impedance matrix calculation.
for n=1:mode ‘
for m=1:mode

Gxx=green(xm(m),xn(n),ym(m),yn(n),deltax,deltay,int);
Gyy=green(ym(m),yn(n),xm(m),xn(n),deltay,deltax,int);

xnl=xn(n)+deltax/2;
xn2=xn(n)-deltax/2;
xm1=xm(m)+deltax/2;
xm2=xm(m)-deltax/2;
ynl=yn(n)+deltay/2;
yn2=yn(n)-deltay/2;
yml=ym(m)+deltay/2;
ym2=ym(m)-deltay/2;

Qxx=(greenl(xm2,xn2,ym(m),yn(n),deltax,deltay,int)...
-greenl(xm2,xn1,ym(m),yn(n),deltax,deltay,int)...
-greenl(xml,xn2,ym(m),yn(n),deltax,deltay,int)...
+greenl(xm1l,xnl,ym(m),yn(n),deltax,deltay,int));

Qxy=(green2(xm2,xn(n),ym(m),yn2,deltax,deltay,int)...
-green2(xm2,xn(n),ym(m),ynl,deltax.deltay,int)...
-green2(xml,xn(n),ym(m),yn2 deltax.deltay,int)...
+green2(xm1,xn(n),ym(m),yn1,deltax,deltay,int));

Qyx=(green3(xm(m),xn2,ym2,yn(n),deltax,deltay,int)...
-green3(xm(m),xn2,ym1,yn(n),deltax,deltay,int)...
-green3(xm(m),xnl,ym2,yn(n),deltax,deltay,int)...
+green3(xm(m),xnl,ym1,yn(n),deltax,deltay,int));

Qyy=(greend(xm(m),xn(n),ym2,yn2,deltax,deltay,int)...
-greend(xm(m),xn(n),ym2,ynl deltax,deltay,int)...
-greend4(xm(m),xn(n),ym1,yn2,deltax,deltay,int)...
+greend(xm(m),xn(n),ym1,ynl, deltax,deltay,int));
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sum=funl*Gxx-fun2*Qxx;
if m==n, sum=sum+Rs(m)*(deltax/deltay); end
Z(m,n)=sum;

sum=-fun2*Qxy;
Z(m,n+tmode)=sum;

sum=-fun2*Qyx;
Z(m+mode,n)=sum;

sum=fun1*Gyy-fun2*Qyy;
if m+mode==n+mode, sum=sum+Rs(m)*(deltay/deltax); end
Z(m+mode,n+mode)=sum;

end;
end;

ZI=inv(Z);
disp('Impedence Matrix Computed and Inverted');

%%%%%%% Incident Angles %%%%%%%%%

phii=0; teti=0;
sinphii=sin(phii*t); sinteti=sin(teti*t);
cosphii=cos(phii*t); costeti=cos(teti*t);

vvi=sinphii*sinteti;
uui=sinteti*cosphii;

Ex=Eotet*costeti*cosphii-Eophi*sinphii;
Ey=Eotet*costeti*sinphii+Eophi*cosphii;

for n=1:mode;
argx=k*deltax*uui/2;
argy=k*deltay*vvi/2;
sincx=1; sincy=1;
if abs(argx)>1e-5, sincx=sin(argx)/argx; end;
if abs(argy)>1e-5, sincy=sin(argy)/argy; end;
expxy=exp(i*k*(xn(n)*uui+yn(n)*vvi));
vx(n)=Ex*deltax*expxy*sincx*sincy;
vy(n)=Ey*deltay*expxy*sincx*sincy;,




end;

% Excitation vector and current coefficients, V and I respectively.
V(1:mode)y=vx(:);

V(mode+1:2*mode)y=vy(:);

[=ZI*V.;

%%%%%%%%% calculation of the field points%%%%%%%%

for m=1:mode
unit](m)=(sqrt(u(m)"2+v(m)"2));
phi(m)=(atan2(u(m)+1e-7,v(m)));
teta(m)=asin(unitl(m));
costet=cos((teta(m)));
sintet=sin((teta(m)));
cosphi=cos(phi(m));
sinphi=sin(phi(m));

for n=1:mode

argx=k*deltax*u(m)/2;
argy=k*deltay*v(m)/2;

sincx=1; sincy=1;

if abs(argx)>1e-5, sincx=sin(argx)/argx; end
if abs(argy)>1e-5, sincy=sin(argy)/argy; end
expxy=exp(j*k*(xn(n)*u(m)+yn(n)*v(m)));
vx1(n)=deltax*expxy*sincx*sincy;
vy1(n)=deltay*expxy*sincx*sincy;

end;

% x- and y-components of the scattered field.
Exs=vx1*I(1:mode); Exs1(m)=Exs;

Eys=vy1*I(mode+1:2*mode); Eys1(m)=Eys;

etet=—*k*eta/2/k*(Exs*costet*cosphi+Eys*costet*sinphi); etetl (m)=etet;
ephi=-j*k*eta/2/k*(-Exs*sinphi+Eys*cosphi); ephil(m)=ephi;

etetrcs(m)=(-j*k*eta/2/k)*Exs;
ephircs(m)=(-j*k*eta/2/k)*(Eys);

end;

%%%%%%%% Calculation of RCS %%%%%%%%%
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for i=1:mode

RCStet(i1)=10*log10(abs(etetres(i)). 2*2*k+1e-10);
RCSphi(i)=10*log10(abs(ephircs(i))."2*2*k+1e-10);
end;

RCS=reshape(RCStet,modex,modey);
u=reshape(u,modex,modey); v=reshape(v,modex,modey);

mesh(u,v,RCS);

% All the data are saved for use in synthesis program.
save b24 RCS u v mode modex modey Exsl Eysl V Z deltax deltay xn xm yn ym Rs I
etetrcs ephircs etet] ephil etet ephi phii teti RCSphi

59




R e e e L L L L L

% synt.m ‘ %
% %
% This program calculates the synthesis results for bistatic case. : %
% The result will be the resistivity which is found %
% from the synthesis equations. %
% %
% Ugurcan Samli, July 1996 %
% %

96%%%6%% %% %% %% %% %% %6 %% %% %% %% %% %%%%%%%%%%%%%%%
clear all;

format long;

% Reading in the data file from the scatterring program (platedcs.m)

load b24.mat;
disp('Data file is loaded.");

eta=377; lambda=1; t=pi/180; k=2*pi;
uxx=linspace(-1,1,mode);

vyy=linspace(-1,1,mode);

% Reading the E-field components from the data file.

efld(1:mode)=Exs1(:); efld(mode+1:2*mode)=Eys1(:);
rs=[Rs,Rs]; rs=diag(rs);

%%%%%%%%%% Filling the matrices %%%%%%%%%%%%%
% Original resistivity is subtracted from the impedance matix.
7=7-1s;
for m=1:mode

for n=1:mode

argy=k*deltay*v(m)/2;

argx=k*deltax*u(m)/2;
sincx=1; sincy=1;
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if abs(argx)>1e-5, sincx=sin(argx)/argx; end,
if abs(argy)>1e-5, sincy=sin(argy)/argy; end;
expxy=exp(j*k*(xn(n)*u(m)+yn(n)*v(m)));

fnm1(m,n)=expxy*sincx*sincy*deltax;
fam2(m,n)=expxy*sincx*sincy*deltay;

end;
end;

% Filling the scattered matrix (First equation), and current
% coefficients, I.

FF1=pinv(fnm1); FF2=pinv(fom2),
FFI=[FF1,zeros(mode,mode);zeros(mode,mode),FF2];

I=(efld*FFL.");
%%%%%%%%%%% Matrix Operations %%%%%%%%%%%

% Second equation (Equation 63) operations. Excitation vector V is from the
% data file.

ZIxy=7*1.",
AA=V.'-ZIxy;
ZL=(AA/LY;
ZL1=real(ZL);

ZLx=(deltay/deltax).*ZL1(1:mode);
ZLy=(deltax/deltay).*ZL1(mode+1:2*mode);

% Reconstructed resistivity rx.
rx=reshape(ZLx,modex,modey);
rorg=reshape(Rs,modex,modey);

IX=TX-T0Ig;

uxx=reshape(uxx,modey,modex); vyy=reshape(vyy,modex,modey);
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%%%%%%%% %% Plots %%%%6%%%%%%%%%%%%%%%%
% Plot of residue (rx) resistivity.

mesh(uxx',vyy,rx); grid; view(30,30);

%save s12 uxx vyy rx rorg

title('Comparision of the Resistivities; in x-direction’);
xlabel('u), ylabel('v"), zlabel('Resistivity Differences');
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function [nu,nv]=dcsin(mode)

R R R B e L T A 2

% This function calculates the number of points inside the
% unit circle, and shows these points.

%

% function [nu,nv]}=dcsin(mode)

%

% Ugurcan Samli

%
%
%
%
%
%

R L R L L G S A L L L

% Area ratio of the unit circle and the total area.
tot_pts=1.28*mode;
totsqr=sqrt(tot_pts);

if abs(round(totsqr)-totsqr)<0.2
nu=round(totsqr);
nv=round(totsqr);

else
nu=ceil(totsqr);
nv=floor(totsqr);

end;

[u,v]=center(nu,nv);

n_uv=nu*nv;
sintet=sqrt(u.”2+v."2);

for s=1:n_uv

if sintet(s)>1
u(s)=0;
v(s)=0;
else
u(s)=u(s);
v(s)=v(s);
end;

end;

aa=find(u=0); bb=find(v==0);
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u(aa)=[]; v(bb)=[l;
[ﬁu nv length(u) length(v)]

plot(u,v,+),xlabel('v),ylabel('v'); axis([-1,1,-1,1]);
title('Points inside the unit circle');
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function [x,y]=center(modex,modey)

oY a Yoo oY H Ve e e he Voo Ve YoY% S o6 Yo% % %% %6 %

% center.m %
% This Function finds the center points of the patches %
% in the Direction Cosine Space. %
% %
% [x,y]=center(modex,modey)

%

% %
% Ugurcan Samli, May, 1996. %

S L L R e e L R

Lx=2; Ly=2;

deltax=Lx/modex; deltay=Ly/modey;
a=0,

for s=1:modey
for ss=1:modex

a=a+tl;
x(a)=(-Lx/2-+deltax/4+(ss-1)*deltax);
y(a)=(-Ly/2+deltay/4+(s-1)*deltay);

end;
end;




% green.m
% Ugurcan Samli, Resistive Plate MM solution
% This function computes the integral of green's function.

function gg=green(a,b,c,d,g,h,int);
w=0.225%h;

if int=0
r=sqrt(((b-a)"2+(c-d)"2)+w"2);
ggl=exp(-2*j*pi*n)/r;
gg=ggl*g/4/pi*g;

end

if int==2
xg=[0.5773503 -0.5773503];
ag(1:2)=[1,1];

end

if int~=0
int2=int/2;
for s=1:int2

sl=int-st+1;
ag(sl)=ag(s);
xg(s1)=xg(s);
xg(s)=-xg(s);

end; '

xhigh=a+g/2;
xlow=a-g/2;
bb=(xhigh-xlow)/2;
aa=(xhigh+xlow)/2;
sum=0;

for i=1:int
x=bb*xg(i)+aa;
r=sqrt((b-x)"2+(c-d)"2+w"2);
sum=sum-+ag(i)*exp(-j*2*pi*r)/r;
end;
gg=sum*bb/4/pi*g;
end;
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%

greenl.m

% Ugurcan Samli, Resistive Plate MM solution

% This function computes the integral of green's function.

function gg=greenl(a,b,c,d,g,h,int);

w=0.225%g;

if int==0

end;

r=sqrt(((a-b)"2+(c-d)"2)+w"2);
ggl=exp(-2*j*pi*1)/r;
gg=gg1*h/4/pi/h;

if int=2

end;

xg=[0.5773503 -0.5773503];
ag(1:2)=[1,1];

if int~=0

end;

vhigh=c+h/2;
ylow=c-h/2;
bb=(yhigh-ylow)/2;
aa=(yhigh+ylow)/2;
sum=0;
for i=1:int
y=bb*xg()+aa;
r=sqrt((a-by 2+(y-d)"2+w"2);
sum=sum-+ag(i)*exp(5*2*pi*r)/r;
end;
gg=sum*bb/4/pi/h;
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% green2.m
% Ugurcan Samli, Resistive Plate MM solution
% This function computes the integral of green's function.

function gg=green2(a,b,c,d,gh,int);
w=(0.225%g;

if int=0
r=sqrt(((a-b)"2+(c-d)"2)+w"2);
ggl=exp(-2*j*pi*)/r;
gg=gg!*W4/pi/h;

end;

if int==2
xg=[0.5773503 -0.5773503];
ag(1:2)=[1,1];

end;

if int~=0
int2=int/2;
for s=1:int2
sl=int-s+1;
ag(s1)=ag(s);
xg(s1)=xg(s);
xg(s)=-xg(s);
end;
yhigh=c+h/2;
ylow=c-h/2;
bb=(yhigh-ylow)/2;
aa=(yhigh+ylow)/2;
sum=0;
for i=1:int
y=bb*xg(i)+aa;
r=sqrt((a-b)"2+(y-d)"2+w"2),
sum=sum-+ag(i)*exp(-j*2*pi*1)/r;
end;
gg=sum*bb/4/pi/h;
end;
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% green3.m
% Ugurcan Samli Resistive Plate MM solution

% This function computes the integral of green's function.

function gg=green3(a,b,c,d,g,h,int);
w=0.225%h;

if int==0
r=sqrt(((a-b)2-+(c-dy2)+w2);
ggl=exp(-2*j*pi*1)/r;
ge=ggl*g/4/pi/g;

end;

if int=2
xg=[0.5773503 -0.5773503];
ag(1:2)=[1,1];

end;

if int~=0
int2=int/2;
for s=1:int2
sl=int-s+1;
ag(sl)=ag(s);
xg(s1)y=xg(s);
xg(s)=-xg(s);
end;
xhigh=a+g/2;
xlow=a-g/2;
bb=(xhigh-xlow)/2;
aa=(xhigh+xlow)/2;
sum=0;
for i=1:int
x=bb*xg(i)+aa;
r=sqrt((x-b)"2+(c-d)"2+w"2);
sum=sum-+ag(i)*exp(-*2*pi*r)/r;
end;
gg=sum*bb/4/pi/g;
end;
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% green4.m
% Ugurcan Samli Resistive Plate MM solution
% This function computes the integral of green's function.

function gg=green4(a,b,c,d,g,h,int);
w=0.225%h;

if int==0
r=sqrt(((a-b)"2+(c-d)"2)+w"2);
ggl=exp(-2*j*pi*1)/r;
gg=ggl*g/4/pi/g;

end;

if int==2
xg=[0.5773503 -0.5773503];
ag(1:2)=[1,1};

end;

if int~=0
int2=int/2;
for s=1:int2
sl=int-s+1;
ag(s1)=ag(s);
xg(s1)=xg(s);
xg(s)y=-xg(s);
end;
xhigh=a+g/2;
xlow=a-g/2;
bb=(xhigh-xlow)/2;
aa=(xhigh+xlow)/2;
sum=0;
for i=1:int
x=bb*xg(i)+aa;
r=sqrt((x-b)2+(c-d)"2+w"2);
sum=sum-+ag(i)*exp(-j*2*pi*r)/r;
end;
gg=sum*bb/4/pi/g;
end;
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%%%%%0%%%%0%%%%6%%%%%%%%%%%%%%%%%%%%%%%% %% %%

%

% sample.m

%  This program analyses the frequency content of the E-field
% inuand v directions.

%

% Ugurcan Samli, August 96

%

%
%
%
%
%
%
%

%%%%%%%%6%0%0%%%%%0%%%%%%%%%%%:%%%%%%%%% %% %% %%

clear all;
load b24.mat

Efld=Exsl;
Efld=reshape(Efld,modex1,modey1);

% fnn : number of FFT points. k : Spatial Frequency index.
% us : Sampling interval in DCS.
% This is for bistatic case and normal incidence.

n=128;
c1=0:tn-1;

us=2/(modex1-1);
k=c1*2/(fn*us);

% fft in 1-dimension. FFT is performed only in 1 column (or row).

k=k(1:fn/2+1);

e1=Efld(6,:);

e2=abs(ffi(e1,in));

figure(1);

plot(k,e2(1:fn/2+1)); grid;
xlabel(Number of samples in DCS');
ylabel("abs(fft)"); title('3 by 3 plate");

% fft in 2-dimension.

ff=abs(fft2(Efld,fn,fn));

[ku,kv]=meshgrid(k.k);

figure(2);

mesh(ku kv, ff(1:f0/2+1,1:fn/2+1)), grid; view(30,30);
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xlabel(' Number of Samples in u-direction’);
ylabel('Number of Samples in v-direction’),
Zlabel(‘abs(fft)"); title('3 by 3 plate’);
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